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Summary

This is the second quarterly progress report for a contract that began in May, 1996, for the
Definition Phase of a MODIS Instrument Team investigator project. The Definition Phase
contract covers the period from May 13, 1996, through June 30, 1997. The central
objective of the Definition Phase contract is:

To establish a protocol for developing and validating regional or site-specific
algorithms for estimating surface chlorophyll-a concentration and primary
productivity while accounting for optical variability of other water constituents.

This report describes progress in three areas: (1) chlorophyll algorithm protocol
development (2) primary productivity algorithm protocol development and (3) participation
in MODIS Science Team meetings and related activities.

Chlorophyll Algorithm Protocol Development

This objective is largely theoretical in nature. The end result will be a paper that describes
the general approach to parameterizing and validating the chlorophyll algorithm while
accounting for optical variability of other water constituents found in coastal, estuarine and
inland waters. There are 5 tasks involved in accomplishing this objective.

The basis for the chlorophyll algorithm will be a radiance model relating upwelling spectral
radiance above the water surface, Lw( λ i), to the inherent optical properties of the water,
specifically to the backscattering coefficient bb( λ i), and the absorption coefficient, a( λ i).
The inherent optical properties (IOPs) are then related to constituents in the water.
Constituents of interest include phytoplankton chlorophyll (CHL), chromophoric dissolved
organic matter (CDOM), and total suspended sediments (TSS).

A radiance model, run in the forward direction, predicts spectral radiances given constituent
concentrations and other properties of the in-water constituents. The bio-optical algorithm
is the inverse of the radiance model. That is, it predicts constituent concentrations and their
optical properties given spectral radiances derived from atmospherically corrected satellite
observations. Radiance models involving inherent optical properties generally involve their
ratio:

bb( λ i) bb( λ i)/a( λ i) bb( λ i)
a( λ i) + bb( λ i) = 1 + bb( λ i)/a( λ i) = a( λ i)
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Progress/discussion to date on each of the tasks is as follows:

1. Evaluation of several candidate algorithms based on radiance models

This task has been completed. Considerations were discussed in the first progress report
(October 1996). Based on our evaluation, we have also accomplished the second task

2. Final selection of a radiance model and algorithm

We have chosen the “semi-analytic” radiance model (SRM) of Gordon et al., (1988) to use
as the basis for relating normalized water-leaving radiances to the ratio X = bb/a (Table 1).
However, we have modified the model in that we use the absorption coefficient rather than
a K model (as was done by Gordon et al. (1988) to replace a+bb).

Table 1. Equations used to derive Lwn from bb and a (left column) and the inversion equations used to derive bb/a from Lwn

(right column). Eqs. 1.1 to 1.3 predict the normalized water-leaving radiance given a and bb whereas eqns. 1.4 to 1.6 are the
basis for analytical algorithms used to derive in-water optical properties gives water-leaving spectal radiance measurements.

Given the inherent optical properties, a and bb, we define
x’ as follows:

Given normalized water-leaving radiance, Lwn, equation
(1.3) is inverted to obtain the remote-sensing reflectance

x’      (1.1) (1.4)

where a and bb are the effective absorption and back- where M = ( l-p)(l-p')/m2. Note that both Lwn and FO depend
scatter coefficients within the upper optical depth. on wavelength, whereas the other terms in ( 1.4) do not.

Based on results of Gordon (1986), the remote-sensing
reflectance is accurately represented as:

0.0949 x + 0.0794 x'2 -0.0949 + {0.0090+ 0.3176 R/Q(1.2) x’ = 0.1588 (1.5)

for solar zenith angles 00> 20°.

According to the “Semianalytic Radiance Model” of Gordon Since a>>bb in most Case 1 waters, equation (1.1) is often
et al., (1988), the normalized warn-leaving radiance can be
modeled as:

approximated by X'. ~ bb/a. However, this approximation is
unnecessary, since the ratio of bb to a is easily computed as:

L w n=
(1-p)(l-p')F oR/Q

(1.3)
m2(l-rQ*R/Q) a . (1.6)

where Q* is an estimate of Q, and other symbols are defined Thus, beginning with normalized water-leaving radiances in
in the text. The term (1-rR) which appears in Gordon et al. k spectral bands of a satellite ocean color sensor, the variables
(1988), has been replaced by (1-rQ*R/Q). Q* does not need X'i, i = l,...,k, can be computed, and these used to compute
to be particularly accurate since (1-rR) varies from about the ratio of backscatter, bb( λ i), to absorption a( λ i), at the center
0.92 to 1.0, and is often assumed to be 1.0. wavelengths, λ i, i = 1,...&

The equations in Table 1 clearly show that the relationship between X and Lwn is nonlinear.
However, within the dynamic range (O< Lwn <2.5 mW cm-2 µm-l sr-1) characteristic of
most oceanic waters, the relationship is very nearly linear (Fig. 1). The parameters used to
derive X from& are listed in Table 2(a).
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Table 2. Parameters used in the prototype algorithm and radiance model.

(a) Parameters used to derive X from water-leaving radiance (Table 1).
Fo= extraterrestrial solar irradiance (mW cm-2 µm-l sr-l); M = (1-p) (l-p')/m2.
Constants used were: p =0.021, m = 1.33, r= 0.48, and Q* =4.

Fo( λ )
443

rQ*
179.7 0.2885 0.53748

520 182.4 0.02555 0.53931 1.92
550 181.8 0.02471 0.53978 1.92

(b) Parameters of the phytoplankton absorption coefficient model based on
Bricaud et al. (1995). The pure seawater absorption, aW( λ ), is from Pope
(1993).

aW( λ ) A( λ ) B( λ )
443 0.0090 0.0393 -0.340
520 0.0474 0.0143 -0.196
550 0.0654 0.0080 -0.052

(c) Parameters of the particle backscatter coefficient model. These bbp( λ )
model parameters were based on the model of Gordon et al. (1988), where
they assumed b0 = 0.3 m-l and Ab( λ ) was proportional to b0. The Ab( λ )
values given here are normalized to b0 = 0.3 m-l.

bW( λ ) Ab( λ ) Bb( λ )
443 0.00239 0.0100 0.225
520 0.00120 0.0109 0.332
555 0.00095 0.0110 0.358

This approach gives us the flexibility to test sub-component models for the absorption and
backscattering by various water constituents. Specifically, we can select from a number of
absorption and backscattering coefficient models for phytoplankton chlorophyll, CDOM,
TSS, etc. These are then used to calculate the total absorption and backscattering
coefficients as the sum of the absorption and backscattering coefficients for all of the
components in seawater. In Case 1 waters, the only particles in the water are
phytoplankton and their breakdown products such as detritus and CDOM. Case 2 waters
will have other constituents such as TSS.

For waters with a single type of particle, the backscattering coefficient is bb = bbw + bbp

where bbw = backscattering coefficient of seawater, and bbP = backscattering coefficient of
the particles. The total absorption coefficient is a = aw + ag + ath where aw = absorption
coefficient of seawater, ag = absorption of gelbstoff (yellow matter or CDOM) and detritus,
and ath = absorption of phytoplankton.

Spectral values for aW and bbw have been previously measured. We use aw values from
Pope, unpublished (taken from the Wetlabs AC-9 calibration manual, 1996), and bbW

values from Smith and Baker (198 1).
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Available component sub-models that we will be testing in future work

Absorpti on Models

ag = gelbstoff absorption (dissolved sea salts and dissolved humic acids)

The ag Model

ag = ag( λ 0)xe
(-S( λ−λ0 ))

where

s = 0.0145 (shape factor, range: 0.011< S < 0.017)

-1ag( λ 0) = ag(375) > 0.06 m

phytoplankton absorption

Bricaud et al. (1995)

a* φ = A( λ ) x C-B( λ )

where
A( λ ),B( λ ) are wavelength-dependent parameters (see Table 2b above)

The above equation is for a*φ, not a φ. The relationship between the two is a* φ = a φ /C

The Hyperbolic a Model (Carder et al., 1996)

Carder (1996) - MODIS ATBD #21

a φ = a0( λ ) x exp[al( λ ) x tanh(a2( λ ) x ln(a0)(675)/a3(( λ )))] x a0(675)

which through mathematical substitution and using reduces to:

a φ = a0( λ )x exp[al( λ )x [(a3' - C)/(a3' + C)]] x (61.9)

where
a0, a1, a2 and a3 are wavelength dependent constants

The a Hoepffner and Sathyendrenath Model
(Heopffner and Sathyendrenath,1993)

a φ = a*( λ0) x a_bar( λ )C
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The Gordon bbp Model
Gordon et al. (1988)

b bp = b0A'C B

where
b0 - variable
A,B - wavelength-dependent constants

The bbp Morel Model

Morel (1988)

bb (λ) = b x bb (λ)

where
b = b0x C0 . 6 2

bb (λ) = 0.002 + 0.02 x (0.5 + 0.25 x logC)(550/ λ)

The bbp Gordon K-Model (the Diffuse Attenuation Coefficient Model)
Gordon (1989, 1994)

where
D = 1.1 (This is a function of solar zenith angle and wavlength with an average

value of 1.1 and ranges from 1.019 to 1.346- Gordon ( 1994)
K (λ) = KW (λ) + Xc (λ) Ce (λ)

Kw (λ), Xc (λ), and e (λ) are tabulated in Morel, 1988.

The Mathematical bbp model

bbp (λ) = bbt (λ0) x (λ0/λ) n

where
n = 3.3 Hoge and Lyon, 1996

Tasks that remain to be accomplished are:

3.

4.

5.

Parameterizing the model so as to minimize squared error

Demonstrating and testing the algorithm using actual satellite and in-situ data

Completion of a journal article or NASA technical report
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Primary Productivity Algorithm Protocol Development

This objective, which is also theoretical in nature, will result in a second paper that
describes the general approach to parametrizing and validating a primary productivity
algorithm for coastal, estuarine and inland waters. This objective entails 5 tasks (see
Timeline).

1. Evaluation of several candidate algorithms

This task is being accomplished as an activity of NASA's Ocean Primary Productivity
Working Group. We are conducting a Primary Productivity Algorithm Round Robin
(PPARR) which is now in the second round of tests.

A report on the second round of the PPARR was prepared and distributed to participants.
Conclusions from that report are in the form of brief answers to the questions addressed.
These were:

1. How do algorithm estimates compare with estimates of daily integral
primary productivity based on in-situ measurements?

The top-performing algorithms had RMS errors of 0.67 to 0.78 g Cm-2 d-1 (0.22 to 0.26
decades of log) relative to in-situ estimates of integral daily primary productivity in a
sample of 89 stations with wide geographic coverage. Within the sample used, the mean
integral productivity was 1.08 g C m-2 d-l but it varied by more than two orders of
magnitude. Measures of performance in round two were improved over the results of
round one which were based on 25 stations and more limited geographic coverage. Biases
are a significant source of error in the algorithms, and three maybe reduced by simple
reparameterizations.

2. Do some algorithms perform better in a specific region? If so, have these
algorithms been parameterized with data from the region? Do they reflect a
better understanding of productivity in that region?

Some algorithms tend to perform better in a particular region compared with other regions.
It is unknown whether or not this is because they have been parametrized with data from
those regions. If so, they may also reflect a better understanding of productivity in a
particular region. When the error analysis was performed on a regional basis, RMS errors
ranged from 0.10 to 0.47 g Cm-2d-l (0.07 to 0.20 decades of log) for all regions except
the Palmer LTER stations where RMS errors were 1.48 g C m -2 d-l (0.37 decades of log).

3. How do algorithms compare with one another?

Several algorithms were highly correlated with one another. The top-performing
algorithms had correlation coefficients ranging from 0.79 to 0.97. Systematic differences
were seen between algorithms that were both highly correlated, as well as between some
that were poorly correlated. This comparison of algorithms suggests that differences in
algorithms may be explained (or even eliminated) by slight changes in parameterizations.
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4. How does the error in a satellite-derived surface chlorophyll measurement
affect primary productivity algorithms?

Simulated errors in the surface chlorophyll concentration (∆Β) resulted in highly correlated
errors in primary productivity (∆ IPsat). However, the errors in productivity did not scale in
proportion to the chlorophyll errors, but rather they varied as:

∆ IPsat ~ ( ∆Β) 
P

where p is an exponent ranging from 0.3 to 0.8. Some algorithms were remarkably
insensitive to errors in surface chlorophyll suggesting that chlorophyll plays a minor role.

5. How much improvement can be achieved with better knowledge of:

a. the vertical distribution of chlorophyll, temperature, and light?

All algorithms except one improved with the incorporation of vertical profile information.
The profile information (chlorophyll, temperature and light) reduced biases as much as
77% (on average 40-50%), and RMS errors by as much as 50% (average 10-20%).

b. the photo-physiological state of the phytoplankton?

All but three algorithms improved with the incorporation of photo-physiological
information. The photo-physiological information (Pb

opt and alpha) reduced biases as
much as 99% (on average by about 35%), and RMS errors were reduced as much as 50%
(average 20-30%). However, three algorithms were unable to incorporate the information
correctly, and in these cases, their performance deteriorated severely. Evidently, more
work is needed to learn how to interpret these parameters. Some participants did not use
the information because they said it was too difficult to interpret.

c. vertical profiles and photo-physiological state?

The difficulty in interpreting photo-physiological parameters affected the results in step 3
where both types of information were provided for all stations. Only 6 algorithms were
tested with all the information in step 3. Most showed some improvement, but not as much
as was expected. For those showing improvement, biases were reduced between 13 and
90%, and RMS errors were reduced between 5 and 53%.

Tasks that remain to be accomplished are:

2. Selection of an analytical model and algorithm for demonstration purposes

3. Parametrizing the algorithm so as to minimize squared error

4. Demonstrating and testing the algorithm using actual satellite and in-situ data

5. Publication of a journal article or NASA technical report

Participation in MODIS Science Team meetings and related activities

I attended the MODIS ATBD review in November, and a meeting of the MODIS Oceans
Discipline Group (MOCEAN) in January, 1997.
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